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The dramatic effects of viscous dissipation on the stability of Newtonian Taylor–
Couette (TC) flows are studied experimentally using flow visualization techniques.
Viscous heating, parameterized by the Nahme–Griffith number Na, drives a transition
to a new, oscillatory mode of instability when coupled with the effects of centrifugal
destabilization. This instability, consisting of travelling axisymmetric vortices, only
occurs when viscous heating and centrifugal destabilization are both present. Step
tests in cylinder velocity show that the time following initiation of shearing required
for onset of instability scales well with the time for the fluid to reach a steady
temperature profile under the action of viscous heating. The onset time can be
dramatically reduced at fixed Na by increasing the centrifugal destabilization through
the addition of co-rotation of the outer cylinder. The onset time can also be reduced
while holding the centrifugal destabilization constant by increasing the amount of
viscous heating (i.e. holding Reynolds number Re constant while increasing Na). The
effects of viscous heating on the critical conditions of Newtonian TC flows are also
quantified using ramp tests in cylinder velocity. These tests reveal the large extent to
which viscous heating is destabilizing; at Na ≈ 2, a transition occurs at a critical Re
that is less than 5% of the isothermal value.

1. Introduction
Recently there has been increased interest in the effects of viscous heating on

the hydrodynamic stability of fluids. In addition to being of general interest to
physicists, this subject is of great importance to the polymer processing industry, where
highly viscous polymeric liquids under shear may experience a significant increase in
temperature due to viscous dissipation. The dissipation-induced temperature gradient
may interact with destabilizing forces to enhance the destabilization and reduce the
useful operating window of polymer processing equipment. Viscous heating is also
present in the processing of viscous, Newtonian fluids, and is known to affect the
stability of flows of Newtonian fluids (Joseph 1965; Sukanek, Goldstein & Laurence
1973; White & Muller 2000; Al-Mubaiyedh, Sureshkumar & Khomami 1999, 2002).

Taylor–Couette flow, or flow between concentric, rotating cylinders, is a convenient
starting point for examining the effects of viscous heating on hydrodynamic stability.
This flow configuration and the relevant geometrical parameters are shown schemat-
ically in figure 1. This geometry has a simple, easily generated base flow and the
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Figure 1. Schematic of Taylor–Couette flow.

recirculating nature of the flow makes it ideal for visualization experiments. In addi-
tion, the inherent symmetry of Taylor–Couette flow makes it a convenient platform
for theoretical hydrodynamic stability studies. Here we report experimental studies
on the effects of viscous heating on the hydrodynamic stability of Taylor–Couette
(TC) flow of Newtonian fluids. The isothermal and non-isothermal hydrodynamic
stability of Newtonian fluids is much better characterized and understood than that
of viscoelastic fluids. In addition to providing a greater understanding of general
hydrodynamic stability problems, we hope to apply the techniques and methodolo-
gies developed for these Newtonian experiments to more complex and industrially
relevant flows of viscoelastic fluids.

In the isothermal TC flow of a Newtonian fluid, as the rotation rate of the inner
cylinder is increased, the purely azimuthal base flow becomes unstable at a critical
rotation speed and is replaced by stationary, axisymmetric vortices. The critical
condition may be expressed as a critical Reynolds number (Rec,iso); here we define the
Reynolds number as Re = |Ω2−Ω1|R1(R2−R1)/ν, where R1 and R2 are the radii and
Ω1 and Ω2 are the angular velocities of the inner and outer cylinders, respectively,
and ν is the kinematic viscosity. As the rotation speed of the inner cylinder is
further increased beyond the critical condition (i.e. for Re > Rec,iso), the stationary
axisymmetric vortices are replaced by increasingly complex flows through a now well-
documented series of transitions (Andereck, Liu & Swinney 1986; Koschmieder 1993;
Tagg 1994). Since this instability occurs due to centrifugal destabilization, the base
flow remains stable when generated through rotation of the outer cylinder only. A
co-rotation parameter B, defined as B = (Ω2 − Ω1)/Ω1, may be used to parameterize
the extent of centrifugal destabilization. B = −1 represents rotation of the inner
cylinder only and is the most frequently studied case.
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A large number of dimensionless groups are necessary to completely describe
nonisothermal Taylor–Couette flow of a Newtonian fluid. In addition to centrifugal
forces (described by Re and B), the Prandtl number, which represents the ratio of
momentum to thermal diffusivity, plays an important role in determining the stability
behaviour. Defined as Pr = Cpη/k, where η is the shear viscosity, Cp is the heat
capacity, and k is the thermal conductivity of the fluid, the Prandtl number is a
function of temperature but is independent of other flow conditions (i.e. shear rate)
in the apparatus. The effect of viscous heating is characterized by the Brinkman
number, Br, which scales the viscous dissipation term in the energy equation. The
Brinkman number is defined as Br = η(R1|Ω2 − Ω1|)2/kT0, where T0 is the wall
temperature. Since the fluid viscosity may also be sensitive to temperature, the effects
of the viscosity gradient can be accounted for through the Nahme–Griffith number,
Na = BrΓ , where Γ is the thermal sensitivity of the viscosity, Γ = |(T/η)(∂η/∂T )|T0

.
For large temperature differences across the gap or for large changes in density

with temperature, buoyancy forces also become important in determining the stability
characteristics. The ratio of buoyancy to viscous effects is parameterized by the
Grashof number, defined as Gr = gβd3∆T/ν2, where g is the acceleration due to
gravity, β is the coefficient of thermal expansion of the fluid, d is gap between the
cylinders (R2−R1), and ∆T is the temperature change across the gap. ∆T is defined as
(Tinner−Touter) and thus is considered to be positive if the inner cylinder is hotter than
the outer. For a viscous-heating-induced density stratification, the Grashof number
can be found by setting ∆T equal to the maximum temperature increase in the gap.
This quantity is equal to one eighth times the product of the Brinkman number and
the absolute temperature. Finally, since the thermally induced density gradient may
interact with both the centrifugal potential and the gravitational potential, the ratio
of these two buoyancy forces will be important for large temperature gradients.

Previous work on the stability of non-isothermal Taylor–Couette flow has focused
on the effect of an imposed radial temperature gradient (Snyder & Karlsson 1964;
Sorour & Coney 1979; Ali & Weidman 1990; Chen & Kuo 1990). Both experiments
and calculations have concentrated on the case of rotation of the inner cylinder only
(B = −1). These studies show that small imposed radial temperature gradients have
a modest effect on the flow stability, slightly increasing or decreasing the critical
Re, depending on the magnitude of the Prandtl number and the magnitude of the
temperature difference or, equivalently, the Grashof number Gr. These effects are
described in more detail below.

Snyder & Karlsson (1964) studied the flow of water and glycerin–water solutions in
a vertical TC apparatus with an imposed temperature difference between the cylinders.
For Pr ≈ 5 and for small temperature differences ∆T (i.e. |Gr| < 40), both positive
and negative temperature gradients were found to stabilize the flow slightly. The
stabilized secondary flow structures resembled those in the isothermal case: stationary,
axisymmetric, toroidal cells. The maximum stabilization relative to the isothermal case
was about 5%; that is, the critical condition corresponded to approximately 1.05Rec,iso.
As the imposed temperature gradients were further increased, however, the flow was
destabilized for both positive and negative temperature gradients. The secondary
flow under these conditions was stationary, non-axisymmetric spiral cells. At the
largest temperature differences reported, corresponding to Gr ≈ 400, the critical
conditions were approximately 0.90Rec,iso. The authors studied several flow conditions
and the stability results were independent of fluid properties: stability curves could
be plotted as universal curves of Rec versus ∆T . Snyder & Karlsson speculated that
the important effect of the temperature gradient is the addition of an axial flow due
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to natural convection; it is this axial velocity which affects the stability of the base
flow.

In subsequent experiments, Sorour & Coney (1979) studied the effect of an imposed
temperature gradient on the TC stability of two oils. The imposed temperature
gradient was found to be monotonically destabilizing and the form of instability was
always stationary, axisymmetric, toroidal vortices. The maximum destabilization was
approximately 84% of the isothermal critical condition (i.e. Rec ≈ 0.84Rec,iso) at a
Grashof number of about 70. Once again this destabilization was attributed to the
axial flow driven by natural convection. These authors did not, however, observe
stabilization at small ∆T as found in Snyder & Karlsson’s work. However, Sorour &
Coney did not report Prandtl numbers for their oils and so the relevance of a direct
comparison is not clear.

Ali & Weidman (1990) performed extensive stability calculations for Taylor–Couette
flow with radial heating across the annulus and the cylinder axes aligned with gravity
as in the experiments described above. A Boussinesq approximation was made to
account for buoyancy arising from the interaction of the thermally induced density
gradient and the gravitational potential. The stability was tested with respect to both
axisymmetric (toroidal) and non-axisymmetric (helical) disturbances. Calculations at
the specific conditions of the work of both Snyder & Karlsson and Sorour & Coney
were performed to address the apparent conflicts between the two sets of experiments.
Ali & Weidman demonstrated that increasing the Prandtl number decreases the system
stability, and the effect increases markedly for Gr > 30. These authors’ predictions
are in qualitative agreement with the results of both Snyder & Karlsson and Sorour
& Coney, the differences between the two sets of experiments being due primarily
to Pr effects. (Ali & Weidman estimate 300 < Pr < 860 for the latter experiments.)
Thus, at low Gr either modest stabilization or destabilization of Rec may be observed,
depending on Pr. As Gr is increased from zero, the most unstable mode changes from
an axisymmetric one to a non-axisymmetric mode. Dramatic destabilization relative
to the isothermal critical condition is predicted only for high Gr.

Chen & Kuo (1990) also calculated the linear stability of Taylor–Couette flow with
a small radial temperature gradient. Although they considered only axisymmetric
disturbances, they examined the interaction of the thermally induced density gradient
with both the centrifugal and the gravitational potentials. When buoyancy forces
induced by the centrifugal potential are included, the stability curves are no longer
symmetric about Gr = 0, i.e. increasing the ratio of centrifugal to gravitational
buoyancy forces is stabilizing for Gr > 0 and destabilizing for Gr < 0. Like Ali &
Weidman, they found that Pr has a large effect on the flow stability and it is possible
to obtain the results of Snyder & Karlsson (stabilizing and then destabilizing as ∆T
is increased) and Sorour & Coney (monotonically destabilizing in ∆T ) by varying
Pr. This suggests that the effect of thermal fluid properties is a large one, that both
gravitational and centrifugal buoyancy must be taken into account, and that the
stability landscape of non-isothermal TC flow is very complex.

The stability of Newtonian TC flow in which the non-isothermal effects are due
to viscous dissipation, rather than an imposed temperature gradient, has received
considerably less attention. Kolyshkin & Vaillancourt (1993) have performed linear
stability calculations on the related case of Newtonian TC flows with temperature
gradients caused by uniform heat generation in the fluid. As in Chen & Kuo’s work,
the fluid density is allowed to change with temperature and thus the temperature
gradients cause buoyant secondary flows that ultimately lead to instability. In contrast
to calculations for the case of radial heating however, for small gaps and for Prandtl
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numbers from 1 to 100, Kolyshkin & Vaillancourt found that the most unstable
disturbance flows were always axisymmetric, with larger amounts of heat generation
and larger Pr causing increased destabilization.

For the most part, the theoretical and experimental studies of non-isothermal
Newtonian TC flows have focused on fluids that have low Prandtl number (Pr < 100)
and are near the threshold for the isothermal instability. A few studies, however,
have been performed on more viscous fluids where temperature gradients may be
caused by viscous dissipation. Al-Mubaiyedh et al. (1999, 2002) recently performed
linear stability calculations on Newtonian fluids with much larger Pr(∼ 11 000).
Thus, significant viscous heating was considered to be present in these flows. In
these calculations, however, buoyancy is neglected and the viscous-heating-induced
temperature gradient causes changes only in the viscosity. In this case, viscous
heating was found to cause a new, axisymmetric mode of instability in Newtonian
fluids. The mechanism of the new instability is a result of the coupling between the
perturbation radial velocity and the base-state radial temperature gradient giving rise
to an enhanced centrifugal force and a reduction in the critical Reynolds number.
This mode of instability is stationary if the outer and inner cylinders are held at
precisely the same temperature, and oscillatory with axially propagating vortices if
the outer cylinder is slightly hotter than the inner. This new mode is monotonically
destabilizing: as viscous heating – parameterized by the Brinkman number (or the
Nahme–Griffith number) – is increased, dramatic destabilization from the isothermal
TC flow critical conditions can be observed. These studies are particularly striking in
that destabilization is predicted without the inclusion of buoyancy, which has been
found to be the driving force for enhanced TC destabilization in all past theoretical
studies.

The results of Al-Mubaiyedh et al. were confirmed qualitatively when a new mode
of destabilization of Newtonian fluids by viscous heating was experimentally observed
by White & Muller (2000). For the TC flow of glycerin, an axisymmetric, oscillatory
instability was seen at Reynolds numbers as low as 0.126Rec,iso. In these experiments
the outer and inner cylinders were held at the same temperature. These new secondary
flows are much weaker than Taylor vortex flow and appear only after shearing the fluid
at a constant Re for a very long time. The experimental apparatus and image analysis
system, originally developed to examine weak elastic instabilities in viscoelastic Boger
fluids (Baumert & Muller 1995), was very well-suited to examine these weak, low-Re,
Newtonian instabilities.

In the present work we provide a comprehensive experimental investigation of this
new viscous-heating-induced instability in Newtonian Taylor–Couette flow. In partic-
ular, we seek to understand how the instability is affected by the dimensionless groups
and destabilizing forces present in the problem. The features of this instability are
first examined using tests at fixed rotation rate to determine the temporal behaviour
of the flow and verify our understanding of the relevant time scales in the problem.
Using the information from the step tests to deduce an appropriate ramp speed,
ramp tests are performed to determine the critical conditions. Care must be taken in
the choice of appropriate ramp speed due to the longer time scale associated with
the development of the thermal field than is inherent in the isothermal Newtonian
problem. An inappropriate choice of ramp speed may cause misrepresentation of the
critical conditions.

In all experiments presented, the temperature differences across the gap are small
and Gr < 0.6. Based on the small Grashof number and the results of Al-Mubaiyedh
et al. (1999, 2002), who find that variations in viscosity lead to instability in the
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absence of buoyancy, we anticipate that destabilization is the result of variations in
viscosity rather than density. For this reason, we report the magnitude of viscous
heating in terms of the Nahme–Griffith number rather than the Brinkman number,
since the latter does not reflect the thermal sensitivity of the viscosity. While we do
not include explicitly the values of Br and Gr for all experiments, we include values
for the thermal sensitivity of the viscosity Γ and the thermal sensitivity of the density
β for all fluids and thus the Brinkman number and Grashof number may easily be
calculated.

In general, the geometrical parameters of aspect ratio (L/[R2 − R1]) and radius
ratio (R1/R2) also play an important role in determining the stability characteristics
of the flow (De Roquefort & Grillaud 1978; Koschmieder 1993; Tagg 1994). No
attempt, however, is made here to explore the effects of these geometrical parameters
and results are reported only for two fixed values.

2. Experimental procedure
2.1. Apparatus

The experimental apparatus is shown schematically in figure 2. The fluid to be studied
fills the gap between an anodized aluminium inner cylinder and a precision-bore glass
outer cylinder. Two different inner cylinders may be used, one with a radius of
6.299± 0.001 cm, and the other with a radius of 6.946± 0.001 cm. The outer cylinder
radius is 7.615± 0.003 cm, so the ratio of cylinder radii R1/R2 is 0.827 and 0.912 for
the wide and narrow gap geometries, respectively. The total cylinder length is 40.6 cm,
which gives a length/gap width ratio of 30.9 and 60.7 for the two geometries. The
inner and outer cylinders can be independently rotated with microstepping motors
having a resolution of 50 000 steps/revolution. The motors are computer-controlled,
which allows for precise control and makes programming of arbitrary velocity profiles
possible. The z-axis of the cylinders is aligned with gravity.

For all tests described herein, the outer and inner cylinders are held at equal
temperatures. Since viscous heating only causes a very small temperature increase
in the working fluid, the temperature of the inner and outer cylinders must be
controlled carefully to keep extraneous or externally imposed temperature gradients
from obscuring the experimental results. The temperature of the outer cylinder is
controlled by placing the cylinders in a bath of recirculating light mineral oil that has
the same index of refraction as the glass outer cylinder. In addition to temperature
control, the bath fluid allows viewing of the test fluid through the curved glass surface
without optical distortion. The inner cylinder temperature is maintained by pumping
mineral oil through its baffled, hollow centre. This system allows both thermostatting
fluid temperatures to be controlled to within ±0.1 K. Although the temperatures
of the thermostatting fluids may be controlled very accurately, the temperatures of
these fluids may not correspond exactly to the wall temperatures. An increase in the
test fluid temperature due to viscous heating may cause the wall temperatures to
increase slightly as a result of thermal gradients in the solid cylinder wall materials.
We anticipate that this effect is negligible at the aluminium inner cylinder wall, but
may be significant at the glass outer cylinder wall due to the much lower thermal
conductivity of this material (kglass ∼ 1.4 W m−1 K−1, kaluminium ∼ 237 W m−1 K−1).
Unfortunately the nature of the apparatus (i.e. rotating inner and outer cylinders,
and the necessity of an optically transparent outer cylinder) makes it difficult to
monitor and control the wall temperatures. Thus the reported temperatures are those
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Figure 2. Schematic diagram of experimental apparatus.

of the thermostatting fluid and not necessarily the wall. We anticipate the temperature
difference between the outer and inner cylinders to be small, always < 2.5 K, which is
the temperature difference calculated when taking into account finite heat conduction
within the outer cylinder at the maximum Na at which experiments were performed.
In this calculation we have assumed rapid heat transfer from the exterior of the outer
cylinder, i.e. that the Biot number � 1, which allows us to consider the exterior wall
of the outer cylinder to be at the same temperature as the bath. In most experiments,
the temperature difference between the outer and inner cylinders will be much smaller
than 2.5 K. However, the results of Al-Mubaiyedh et al. (2002) suggest that even small
temperature differences such as these may affect the symmetry of the disturbance flow.

2.2. Illumination and imaging

The fluid is seeded with a small amount (2 × 10−5 volume fraction) of mica flakes
having major axes between 5 and 35µm and thickness approximately 0.3µm. This
level of seeding resulted in no measurable changes in the fluid properties. Deviations
of the fluid motion from purely azimuthal shearing motion, i.e. motion of the fluid in
the (r, z)-plane, can be observed by differences in the intensity of light reflected from
the anisotropic seeding particles. A beam of light from an argon ion laser is focused
into a uniform sheet of light using a Powell lens; the sheet is co-planar with the z-axis
of the cylinder, illuminating the entire gap. Two CCD cameras, placed orthogonal to
the light sheet, capture images of light reflected from the moving seeding particles.
One camera is used to provide a close-up view while the other is placed farther
away to allow visualization of the entire gap. The images are stored in digital format
on a computer and processed using NIH Image public domain software (Rasband
1994) to enhance the visibility of the often weak secondary flow structures. It is often
convenient to represent an experiment with a single image. This can be done by
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constructing a space–time plot, which is formed by extracting a central line of pixels
from sequential digital images of the gap between the cylinders and stacking them
vertically. These space–time plots or time sequences can be used to present concisely
the bulk of the information available from the experiment. The time sequences are
plotted with short times at the top and long times at the bottom, with the axial
position increasing from left to right. Stationary structures appear as vertical streaks
in the time sequence, while moving structures appear as slanted lines. For every
experiment we generate both space–time plots and two-dimensional movies of the
close-up and distant views in the (r, z)-plane. The movie images may be used to
calculate information such as critical conditions, the time to onset of instability, and
the axial wavenumber and frequency of the disturbance flow. Further details of both
the apparatus and the image processing have been published in Baumert & Muller
(1995).

2.3. Time scales and determination of the critical conditions

There are three important time scales involved in the non-isothermal Taylor–Couette
flow of Newtonian fluids. The first is the time scale for diffusion of momentum across
the gap between the cylinders, given by λviscous = (R2 −R1)

2/ν. The Reynolds number
may be thought of as the product of this time scale and shear rate, Re = (λviscous)(γ̇),
where the shear rate is defined as γ̇ = |Ω2 − Ω1|R1/(R2 − R1). The second time
scale is that for diffusion of vorticity from the ends of the cylinder to the centre,
given by λend effect = (L/2)2/ν, where L is the axial length of the TC cell. This
time scale is important for determination of how the end effects disturb the flow.
Experimental TC apparatus typically has a very large aspect ratio and thus λend effect

is usually much larger than λviscous. The third time scale is a viscous heating time
scale, given by λthermal = (R2 − R1)

2/α, where α is the thermal diffusivity. This time
scale, representing the time for Taylor–Couette flow to attain a steady temperature
profile under the action of viscous heating, is typically quite large in comparison with
the viscous time scale. The thermal time scale appears in the dimensionless Péclet
number, Pe = (λthermal)(γ̇), which is also equal to the product of Re and Pr. For fluids
with Pr � 1 flowing in high-aspect-ratio TC geometries, λviscous < λend effect < λthermal .
Thus, we anticipate flow structures caused by inertia alone to respond at the most
rapid time scale, flows caused by end effects to respond more slowly, and thermally
influenced flows to respond slowest of all. In addition, secondary flows due to end
effects will gradually propagate into the gap from the ends of the cylinders over
the end-effect time scale, whereas secondary flows caused by either the inertial or
thermal instabilities will be manifested in the appropriate time scale simultaneously
throughout the gap.

Two types of Taylor–Couette experiments were performed to study the instability
and determine the critical conditions. In step tests, one of the cylinders was accelerated
from rest to its final angular velocity over the course of a few seconds and the
evolution of the disturbance flow at constant velocity (and Re) was then monitored.
These experiments provide information about the time scales present in the system,
allow rough estimates of the stability boundaries, and are a convenient means for
observing the temporal dynamics of the flow at fixed Reynolds number.

Once the appropriate time scales for the flow were confirmed through step tests,
ramp tests were performed to determine the critical conditions. In ramp tests, the
evolution of the disturbance flow was monitored as the angular velocity of one of the
cylinders was increased at a slow, constant rate. Determination of the appropriate
ramp rates is discussed in detail in § 3.4.
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a Reference value

Glycerin Solution Glycerin Solution Correlation

η (Pa s) 7.42× 103 6.43× 103 0.952 0.270 η = η0 exp[a(1/T − 1/Tref)]
ρ (kg m−3) −0.696 −0.458 1261 1241 ρ = ρ0 + a(T − Tref)
Cp (J kg−1 K−1) 6.43 5.95 2417 2536 Cp = Cp0 + a(T − Tref)
k (W m−1 K−1) 9.0× 10−5 0 0.285 0.295 k = k0 + a(T − Tref)
Table 1. Parameters used to fit the temperature dependence of viscosity, density, heat capacity and
thermal conductivity for pure glycerin and the 93.3% glycerin–6.7% water solution. T is expressed
in Kelvin, Tref = 298 K.

Fluid ν (m2 s−1) η (Pa s) ρ (kg m−3) Cp (J kg−1 K−1) k (W m−1 K−1) Pr

83% glycerin– 5.72× 10−5 0.0689 1204 2670 0.222 829
17% water

78% glycerin– 2.79× 10−5 0.0335 1198 2815 0.330 286
22% water

Butene oligomer 1.59× 10−3 1.47 925.2 1909 0.145 19 350

Table 2. Properties of fluids studied at a single temperature.

2.4. Test fluids

In order to cover a broad range of Re and Na, several Newtonian fluids were studied
in this work. Three fluids were studied at a single temperature of 300 K: two low-
viscosity glycerin–water solutions (83% glycerin–17% water and 78% glycerin–22%
water) and a highly viscous polybutene oligomer (40% Exxon Parapol 450, 60%
Exxon Parapol 700). While changing the test fluid in the Taylor–Couette cell allows
different parameter ranges to be accessed, it is laborious and time-consuming. For
this reason, two other fluids, whose properties could be varied systematically and
accurately by changing the temperature of the apparatus, were also studied. These
two fluids were pure glycerin and a slightly less-viscous glycerin–water solution (93.3%
glycerin–6.7% water).

The kinematic viscosity (ν) of the fluids was determined by capillary viscometry as
a function of temperature for the temperature range accessible in the Taylor–Couette
cell: 286–317 K. The density (ρ) as a function of temperature was also determined
experimentally. The experimental values of kinematic viscosity and density were
used to calculate the shear viscosity (η) at each temperature for the fluids. The heat
capacity (Cp), and thermal conductivity (k) of the fluids were estimated using literature
values (Miner & Dalton 1953; Incropera & De Witt 1990). The fluid properties were
fit to linear functions of temperature for the density, heat capacity and thermal
conductivity, and an exponential Arrhenius-type function for the viscosity. These
functions can be used along with the experimental rotation speed and geometrical
parameters to calculate the dimensionless parameters describing the flow in the
Taylor–Couette apparatus. Table 1 reports the correlations used to fit the fluid
property–temperature relationships for the pure glycerin and the 93.3% glycerin–
6.7% water solution. Table 2 reports the properties of the glycerin–water solutions
and polybutene oligomer, determined as above but at the single temperature at which
those fluids were studied in the Taylor–Couette cell. The values of Γ , the thermal
sensitivity of the viscosity, and β, the volumetric thermal expansion coefficient, are
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Fluid Γ Γ/T (K−1) β (K−1)

Glycerin, T = 289 K 25.7 8.91× 10−2 5.50× 10−4

Glycerin, T = 300 K 24.8 8.26× 10−2 5.53× 10−4

Glycerin, T = 311 K 23.9 7.68× 10−2 5.57× 10−4

93.3% glycerin–6.7% water, T = 289 K 22.3 7.72× 10−2 3.68× 10−4

93.3% glycerin–6.7% water, T = 300 K 21.5 7.16× 10−2 3.69× 10−4

93.3% glycerin–6.7% water, T = 311 K 20.7 6.66× 10−2 3.71× 10−4

Butene oligomer, T = 300 K 24.1 7.99× 10−2 6.59× 10−4

Table 3. Thermal sensitivity of viscosity and density for pure glycerin, the 93.3% glycerin–6.7%
water solution, and the butene oligomer.

Fluid λviscous (s) λend effect (s) λthermal (s)

Glycerin, T = 289 K 0.0267 24.6 470
Glycerin, T = 300 K 0.0689 63.4 480
Glycerin, T = 311 K 0.166 153 489
93.3% glycerin–6.7% water, T = 289 K 0.103 94.8 468
93.3% glycerin–6.7% water, T = 300 K 0.234 216 479
93.3% glycerin–6.7% water, T = 311 K 0.502 462 489
Butene oligomer, T = 300 K 0.109 25.9 2109

Table 4. Viscous, end-effect, and thermal time scales for pure glycerin, the 93.3% glycerin–6.7%
water solution, and the butene oligomer.

reported in table 3 for pure glycerin, the 93.3% glycerin–6.7% water solution, and
the butene oligomer. The values of β and Γ for the multi-temperature fluids are
reported at three temperatures representing the lowest, middle, and highest used in
the experiments. For the butene oligomer, β and Γ at the single temperature 300 K
are reported based on measurements of ρ and η as a function of temperature near
300 K. Values of Γ/T , which are more directly comparable to values of β for the
fluids, are also reported in table 3. It is important to note that the thermal sensitivity
of the viscosity is two orders of magnitude larger than the thermal sensitivity of the
density for all fluids.

This choice of fluids, studied over the temperature range 286–317 K, allows the
viscosity to vary over the range 0.0333 to 2.12 Pa s. For the possible cylinder rotation
speeds of our apparatus, this allows Re to vary from 0 to 164 and Na to vary
from 0 to 2.01. For the fluids studied here, the three time scales for non-isothermal
Taylor–Couette flow vary according to the general progression proposed in § 2.3, i.e.
λviscous < λend effect < λthermal . The viscous time scale, λviscous = (R2 − R1)

2/ν, is on the
order of 0.1 s for all fluids. The end-effect time scale, λend effect = (L/2)2/ν, is a factor of
240 or 920 times larger than λviscous for fluid flow in the wider or narrower geometries,
respectively. The thermal viscous-heating time scale, λthermal = (R2 − R1)

2/α, is on
the order of 500 s for the fluids studied in the narrower geometry, and 2000 s in the
wider geometry. A list of the time scales for pure glycerin, the 93.3% glycerin–6.7%
water solution, and the butene oligomer is given in table 4. The time scales for the
multi-temperature fluids are reported at three temperatures representing the lowest,
middle, and highest used in the experiments.

For Taylor–Couette flow in the presence of viscous heating, the temperature will
vary with radial position in the gap. This temperature stratification will result in
gradients in thermally sensitive fluid properties. Throughout this paper, we report
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flow parameters in terms of fluid properties evaluated at the controlled thermostatting
bath temperature T0.

2.5. Experimental uncertainty

As in any experimental study, there are uncertainties in both the estimation of
physical properties of the test fluids and in the measurement of onset conditions
from our image data. We have performed an error analysis and the error bars are
included on the figures in which we present quantitative data. In this section, we
discuss our primary sources of error. The control of the temperature of the outer
and inner cylinders is the largest source of error in this study. Temperature is the key
experimental variable because a small change in temperature will have a large effect
on the fluid properties, primarily the viscosity. While the temperature of the fluids
in the circulator reservoirs is controlled to within ±0.1 K, at temperatures far from
room temperature, heat transfer from connecting hoses and the non-submerged parts
of the TC cell occurs. This results in larger errors in experiments performed at the
temperature extremes. This uncertainty in temperature was measured in independent
runs in which the circulating fluid temperature could be measured at several points
in the apparatus. There is also a certain amount of subjectivity in determining onset
times and critical conditions from image data. A generous allowance in the error
analysis was made for this uncertainty. We have also included in our error analysis
the uncertainties in the measurement or estimation of R1, R2, k, Cp, η, and ρ. The
effects of these uncertainties are small in comparison with the other sources of error
discussed. We anticipate that other factors, such as buoyancy and end effects, will
have an influence on the stability characteristics of the flow. It is beyond the scope
of our study to include these effects in our error analysis, however, because to fully
account for them a full theoretical stability analysis must be undertaken.

3. Results and discussion
3.1. General properties of the new instability

Preliminary experiments in the narrower gap geometry with the lowest-viscosity
glycerin–water mixture (78% glycerin) confirmed the rapid onset of stationary, ax-
isymmetric vortices at a critical Reynolds number within 0.4% of the predictions
of isothermal linear stability theory for the case of rotation of the inner cylin-
der with the outer cylinder held stationary. These tests, which were rapid ramps
of a very low-viscosity solution, have a vanishingly small Nahme–Griffith number
(Na = 2.47 × 10−3) and are thus assumed to represent the isothermal Taylor insta-
bility. The wider gap geometry was also tested with a low-viscosity glycerin–water
mixture (83% glycerin) and the transition to Taylor vortices occurred within 2% of
the predictions for isothermal linear theory. Here the Nahme–Griffith number is very
low (Na = 4.26 × 10−3) and once again we assume this represents the isothermal
Taylor instability in the wider geometry. We propose that the agreement is better in
the narrower case than the wider due to a reduction of end effects. For this reason,
the majority of our experiments were performed in the narrower geometry.

With fluids having a higher viscosity a transition to secondary flow is observed
at Reynolds numbers well below the critical Reynolds number for the isothermal,
inertial instability (Rec,iso). These secondary flow structures are oscillatory axisymmet-
ric vortices that develop only after a long period of shearing and are much weaker
than the base flow. These features are in contrast to the well-characterized isothermal
Taylor instability, where the disturbance flow develops on the very rapid viscous time
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Figure 3. Images representing the (r, z)-plane of Taylor–Couette flow of glycerin at γ̇ = 271 s−1,
Re = 12.0 = 0.086Rec,iso, Na = 1.26, Pe = 129 000, in the narrower geometry (R1/R2 = 0.912) with
the inner cylinder rotating. (a) Cross-sectional-view images: the inner cylinder is at the bottom and
the outer cylinder at the top. (b) Close-up-view space–time plot. Extent of the z-axis is 4.71 gap
widths. (c) Distant-view space–time plot. Extent of the z-axis is 57.8 gap widths. In these and all
subsequent images, height (z-axis) increases to the right.

scale and the secondary flow is stationary and of comparable strength to the base
flow.

While certain properties of this instability, such as onset times, temporal frequencies
and vortex strengths, vary widely depending on the flow conditions, many features of
this instability are universal. Example images of the onset of the disturbance flow in the
(r, z)-plane and close-up and distant-view space–time plots of the ‘typical’ instability
following a velocity step test in the narrower geometry are given in figure 3. Here,
at Re = 12.0 = 0.086Rec,iso, Na = 1.26, a secondary vortex flow forms approximately
10.6 min after the start of shearing. The vortices move downward in the gap at a
frequency of 0.0081 s−1. This corresponds to a vortex propagation velocity of 0.0032
gap widths s−1, a rate that is very slow compared with the rotation speed of the
inner cylinder (4.151 revolutions s−1). The distant-view time sequence shows that the
instability starts fairly uniformly across the entire gap and further demonstrates that
the vortex propagation velocity is very slow. The long time scale for the onset of
instability is typical of all instabilities of this type, and is consistent with the long
thermal time scale for this flow. The vortices travelling downward in the gap is also
a typical feature of this instability. The time for onset of the instability decreases
and the vortex propagation speed increases as the rotation speed is increased (and
thus both Re and Na are increased). The disturbance flows appear axisymmetric in
all experiments; in selected cases this has been confirmed by ambient time-sequence
capture and subsequent FFT analysis. A detailed description of our tests for non-
axisymmetry can be found in Baumert & Muller (1999).

To gain insight into the mechanism of the instability, we present experiments
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Figure 4. Space–time plots at Re/Rec,iso = 0.179 in the wider geometry (R1/R2 = 0.827). (a) 83%
glycerin–17% water, γ̇ = 6.0 s−1, Na = 1.42 × 10−4, with inner cylinder rotating. (b) Glycerin,
γ̇ = 112.8 s−1, Na = 0.914, with inner cylinder rotating. (c) Glycerin, γ̇ = 112.8 s−1, Na = 0.914, with
outer cylinder rotating. The extent of the z-axis is 30 gap widths in each image.

with pure glycerin and with the 83% glycerin–17% water solution in the wider
geometry. Experiments with the glycerin–water mixture, which has a much lower
viscosity than pure glycerin, show that this low-Nahme–Griffith-number flow does
not exhibit instability. With this fluid, at all Re < Rec,iso, the flow remains purely
azimuthal, as illustrated by the distant-view space–time plot shown in figure 4(a).
Here, at Re = 0.179Rec,iso, Na = 1.42 × 10−4, and Pr ≈ 830, the featureless nature
of the plot reveals the absence of any stationary or moving structures in the gap,
consistent with direct examination of the images of the gap. A space–time plot of
the same experiment as in figure 4(a) but for the more-viscous glycerin, for which
Na = 0.914 and Pr ≈ 11 000, is shown in figure 4(b): the outer cylinder is held
fixed and the inner cylinder is accelerated from rest to a value corresponding to
0.179Rec,iso in a few seconds. A purely azimuthal base flow is initially established
but is replaced after about 5.3 min by axisymmetric, axially travelling vortices. Here
the vortices travel axially and merge with other vortices during the course of the
experiment. A comparison of figures 4(a) and 4(b) indicates that the vortex flow is
due to destabilization of the centrifugal instability by viscous heating effects. That
this disturbance flow is not driven solely by buoyancy induced by viscous heating is
demonstrated by figure 4(c); here we show an experiment at the same Re, Na, and Pr
as figure 4(b), but with centrifugal destabilization absent since the flow is generated
by rotation of only the outer cylinder.

The experiments pictured in figure 4 indicate that the new, oscillatory mode of
instability in Newtonian TC flow at low Reynolds numbers occurs only above some
critical Nahme–Griffith number, and only when centrifugal destabilization of the flow
is present. Thus, the instability appears to be due to a coupling between viscous
dissipation-induced temperature stratification and centrifugal destabilization (White
& Muller 2000). The observed destabilization of Newtonian TC flow by viscous
heating is consistent with the work of Al-Mubaiyedh et al. (1999, 2002). The change
in the spatio-temporal character of the disturbance flow from stationary to oscillatory
is consistent with their calculations in which the outer cylinder wall is assumed to be
slightly hotter than the inner cylinder wall.
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A distant-view time-sequence plot of a linear ramp in cylinder rotation rate in
the wider geometry for the oligomeric butene fluid is shown in figure 5. This figure
serves a dual purpose: it demonstrates that similar instabilities occur in fluids other
than glycerin-based solutions, and also shows concisely the flow behaviour as the
rotation speed is increased above the critical rotation speed. Here, increasing rotation
speed increases all of the destabilizing parameters Re, Na, and Pe simultaneously;
Re and Pe increase linearly with time, while Na increases quadratically with time.
(We present experiments below where we change only Na and Pe while holding Re
fixed.) At the beginning of this ramp, which starts at Re = 1.31, Na = 2.03 × 10−2,
Pe = 25 400, there is no secondary flow. At Re = 8.94, Na = 0.942, Pe = 173 000,
axisymmetric, oscillatory secondary flow structures appear. Again, this Reynolds
number is well below Rec,iso = 101.56, the critical Reynolds number for the isothermal
Taylor instability in this geometry. The vortices move slowly downward and as the
rotation rate of the inner cylinder is increased, the vortex propagation speed increases.
Eventually the vortices display more chaotic behaviour as they oscillate axially and
merge with one another. Although the flow varies in the axial direction, it remains
axisymmetric. This progression of features is seen in all types of fluids studied as the
destabilizing parameters are increased above the critical conditions in the wide gap
apparatus. In the narrow gap geometry, the progression of structures is always from
purely azimuthal flow to ordered, axisymmetric vortices that move steadily down the
axis of the cylinders, as seen in figure 3. The disordered, merging vortices seen in
figure 4(b) and at the bottom of figure 5 were not observed in the narrow geometry.

As the thermal properties (k, Cp) of this oligomeric butene fluid were not readily
available and had to be estimated, we chose to perform a more comprehensive
exploration of the properties of this instability with better-characterized glycerin-
based fluids.

3.2. Step tests: effects of co-rotation

In an effort to elucidate the relevant time scales and stability boundaries for this
instability, more systematic experiments were performed in the narrower geometry.
The narrower geometry was chosen because it is less sensitive to end effects due to
the larger aspect ratio. Also, since it is impossible to completely eliminate the effects
of buoyancy from the experiments, we prefer the narrower gap to keep buoyancy
effects to a minimum.

Here we describe tests performed to investigate the effects of co-rotation on this
new, oscillatory instability. In the isothermal Taylor–Couette problem, the first insta-
bility to Taylor vortices is driven by centrifugal destabilization and so increasing the
amount of co-rotation of the outer cylinder results in additional destabilization of
the base flow. Regardless of the amount of co-rotation, the first transition is always
to stationary, axisymmetric vortices. For the present radius ratio, as the co-rotation
parameter B = (Ω2 − Ω1)/Ω1 is increased from −1 (corresponding to a stationary
outer cylinder) towards −0.558 (the largest amount of co-rotation considered here),
the critical Reynolds number Re = |Ω2−Ω1|R1(R2−R1)/ν decreases monotonically by
approximately 33% (cf. Chandrasekhar 1961). Since, as demonstrated in figure 4, cen-
trifugal destabilization is also critical to this new viscous-heating-induced instability,
we anticipate that co-rotation will enhance destabilization of this new mode.

To assess these effects, the outer/inner cylinder co-rotation was varied at a fixed
shear rate. Because the shear rate is the same in each of the experiments, the Nahme–
Griffith number and thus the temperature increase and subsequent change in fluid
properties due to viscous heating will be the same. The Reynolds number as we define
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Figure 5. Space–time plot representing a velocity ramp of inner cylinder rotation rate with the
butene oligomer in the wider geometry (R1/R2 = 0.827). The outer cylinder is stationary. The extent
of the z-axis is 29.7 gap widths.
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Figure 6. Space–time plots of glycerin, all at Re = 19.1 = 0.136Rec,iso, Na = 0.573, Pe = 119 000,
with varying co-rotation of the outer cylinder. (a) B = −1, (b) B = −0.883, (c) B = −0.809, (d )
B = −0.680, (e) B = −0.558. The extent of the z-axis is 4.8 gap widths in each image. In this and
all subsequent figures the narrower geometry is used (R1/R2 = 0.912).

it is also constant throughout the experiments, but the centrifugal destabilization
increases as B is increased from −1 towards −0.558. Using pure glycerin as the
working fluid, both of the cylinders were accelerated from rest to their final velocity
over the course of a few seconds at the start of the experiment and the evolution of
the flow at constant Re was monitored.

Figure 6 shows close-up-view time sequences for a series of experiments at the same
shear rate corresponding to Re = 19.1 = 0.136Rec,iso, Na = 0.573, and Pe = 119 000.
The amount of centrifugal destabilization varies with increasing outer cylinder co-
rotation, increasing from left (a) to right (e) in the figure. In figure 6(a), there is no
outer cylinder co-rotation and no secondary flow is apparent in 90 min of shearing. As
B is increased from −1 towards −0.558, instabilities occur and the onset times become
progressively smaller as seen in figure 6(b–e). In addition, the axial propagation speed
of the vortices increases as the outer cylinder co-rotation is increased. The onset
times, scaled with the thermal time scale λthermal , are plotted versus the co-rotation
parameter B in figure 7. These experiments show that the time-dependent nature
of the instabilities depends on the amount of both viscous heating and centrifugal
destabilization present in the experiment. We explore the role of the destabilizing
effects of viscous heating and inertia on the time scale for onset of the instability in
the next section.

3.3. Step tests: probing the time scale for instability

More accurate determination of the critical conditions for the instability requires
gradual ramps in Reynolds number. However, in order to verify our estimates of
various time scales (important in determining appropriate ramp rates) and to confirm
the absence of other, longer time scales, step tests were first undertaken. As in § 3.2,
one of the cylinders was accelerated from rest to its final velocity over the course of
a few seconds at the start of the experiment and the evolution of the flow at constant
Re was monitored. Throughout the remainder of this study, we restrict our attention
to the case of a stationary outer cylinder, i.e. B = −1.

Several step tests at fixed Reynolds number and varying Nahme–Griffith number
were performed. This was achieved by varying the experimental temperature (so that
the viscosity would be changed) and adjusting the rotation rate such that the Re
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Figure 7. Onset time as a function of co-rotation parameter B for glycerin, all experiments at
Re = 19.1 = 0.136Rec,iso, Na = 0.573, Pe = 119 000. Filled symbols exhibited a transition at the
indicated time. The hollow symbol at B = −1 represents an experiment that ran for the indicated
time and no discernable onset of secondary flow occurred. The error bars for these data are
approximately the same size as the plotting symbols.

remained the same from one experiment to the next. Since Nahme–Griffith number
depends differently on rotation rate than the Reynolds number, each experiment
corresponds to flow at a different Nahme–Griffith number. The Péclet number (Pe =
Re Pr) also varies due to the change in fluid properties with temperature. This process
was repeated for several Reynolds numbers, using both the pure glycerin and the
93.3% glycerin–6.7% water solution.

The close-up-view time sequences from one set of these experiments are shown
in figure 8, representing flows at Re = 29.9 = 0.213Rec,iso. The first time sequence
is devoid of any features and thus there is no transition to secondary flow in this
experiment, which was run for 71 min. The next three experiments do show a transition
to axisymmetric oscillatory vortices, and the time sequences in figure 8(b–d ) show
transitions at progressively smaller onset times as Na and Pe are increased. The vortex
propagation velocity also increases substantially as Na increases at fixed Re. In step
tests such as the ones shown in figure 8(b–d ), an additional time after the onset of
instability is required to attain the steady-state vortex propagation velocity. This is
especially apparent in figure 8(d ): although onset of instability occurs in 2 min, the
slopes of the lines in this time sequence (and thus the axial propagation speed of the
vortices) reach a steady value only after ∼ 8 min of shearing. The eventual attainment
of a steady vortex propagation velocity after the onset of instability is typical of all
step tests performed; the time to reach the steady value decreases as Nahme–Griffith
number increases at fixed Re.

The results of all of the step tests are plotted as dimensionless onset time (onset time
divided by λthermal) vs. Nahme–Griffith number in figure 9(a). This figure shows that at
each Reynolds number the onset time decreases as Na increases, thus demonstrating
that increasing the rate of viscous heating decreases the onset time for instability.
The same rate of viscous heating (same Na) will result in a different onset time for
flows with different amounts of centrifugal destabilization (different Re). However, if
the data are plotted as dimensionless onset time vs. Péclet number as in figure 9(b),
the curves at all of the Reynolds numbers investigated appear to collapse onto a
single curve. This curve approaches a very high onset time as Pe is decreased to a
value of approximately 120 000. Below this value of Pe, no instabilities were seen for
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Figure 8. Space–time plots of glycerin at Re = 29.9 = 0.213Rec,iso. (a) Na = 0.436, Pe = 129 000.
(b) Na = 0.499, Pe = 134 000. (c) Na = 0.703, Pe = 150 000. (d ) Na = 0.991, Pe = 167 000. The
extent of the z-axis is 4.8 gap widths and the inner cylinder is rotating in each image.

all Re < Rec,iso for experiments running approximately 1 to 2 hours. We believe that
there would be no transition to secondary flow even if these experiments had run for
longer times.

Figures 9(a) and 9(b) show that for all of the step experiments, instabilities occur
within a few multiples of λthermal . This supports the idea that the instability is caused by
a coupling of viscous heating and centrifugal destabilization. The velocity profile will
reach an approximately fully developed state on the order of a few seconds (∼ λviscous)
after the onset of shearing and thus the centrifugal destabilization of the flow will
be established quickly. However, all flows remain in the base state until some time
on the order of λthermal , the time for the temperature profile to approach steady state
under the action of viscous heating. If we decrease the amount of viscous heating at
fixed Re, below some Na the fully developed (infinite time) temperature gradients will
not be large enough to cause destabilization and thus we should see no secondary
flows. This is consistent with the experimental data; we observe no secondary flows
for a given Re even for very long experiments below a certain Na. If we increase
the amount of viscous heating at fixed Re, the temperature gradients become large
enough to cause destabilization even without the flow being fully developed thermally,
which gives rise to the smaller onset times.

To preserve the clarity of figures 9(a) and 9(b), the error bars are shown for only
one set of experiments, those at Re = 29. The experiments at this Re were performed
far from room temperature and represent the worst case in terms of experimental
uncertainty (cf. § 2.5). The experiments at Re = 12 have error bars of a similar size,
but all other data have error bars of approximately the same size as the plotting
symbols. While the uncertainties in the data in figure 9(b) are not large enough to
consider the data to collapse to a single curve, our error analysis neglects factors
such as buoyancy that undoubtedly have some influence on the onset times. For the
purposes of the present study, then, we consider the curve shown in figure 9(b) to
demonstrate the appropriate scaling of the onset time with flow variables. The sharp
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Figure 9. The onset time to instability for pure glycerin and 93.3% glycerin–6.7% water mixture,
scaled by the thermal time scale: (a) vs. Nahme–Griffith number; (b) vs. Péclet number. All reported
transitions are to axisymmetric oscillatory secondary flows that travel downward in the TC cell.
Error bars for data at Re = 12 are comparable to those shown for Re = 29. For all other data sets,
error bars are much smaller and approximately the same as the symbol size.

increase of onset time as Pe is decreased towards Pe ≈ 120 000 seen in figure 9(b)
suggests that, at least over the range of parameters considered here, the instability
happens at a critical Péclet number which is independent of Reynolds number. The
curve in figure 9(b) provides a rationale for performing consistent ramp tests for
different fluids (or temperatures). This is discussed more fully in the next section.

3.4. Ramp tests

While step tests are necessary to determine the time scales relevant to the instability,
the critical conditions are best determined through slow ramp tests rather than
through finite steps in rotation rate of the cylinders. Ramps in cylinder rotation rate
allow one to achieve a large number of different flow states in the apparatus in a
much shorter amount of time than step tests; however, careful attention must be
given to the ramp rate when the flows are slowly developing. If, at a fixed rotation
speed, the onset of instability takes several minutes, it is possible that the true critical
condition may be reached and exceeded in a ramp before the instability is observed.
This would cause over-estimation of the critical conditions. This can be avoided only
by ramping at a rate that is slow compared to any time scale in the system, so that at
each point in the ramp the flow and thermal fields are fully developed. Unfortunately,
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the very long thermal time scales in this system made these ‘pseudo-steady-state’
ramps impractical.

Given the information from the step tests, however, we can adjust the ramp speed
such that the time-dependent behaviour of the flow in each ramp is affected in the same
way by the necessarily finite ramp speed. Figure 9(b) indicates that the instabilities at
different Reynolds numbers have time scales that collapse, approximately, to the same
curve of onset time vs. Péclet number. For this reason, the ramps were performed
starting and ending at the same Pe while ramping in cylinder rotation rate such that
the time rate of change of Péclet number, d(Pe)/dt, was the same for each ramp. With
this procedure, the flow at each ramp speed will be given the same amount of relative
time to reach instability. Thus the critical conditions obtained in such a manner will
be comparable from ramp to ramp. While ramping at a finite rate may result in a
slight over-prediction of the absolute critical conditions for the flow, it will allow us to
make observations about how parameters such as Nahme–Griffith number, Reynolds
number, and Péclet number interact to change the apparent critical conditions for
finite ramp speed. These results can also be compared with theoretical predictions to
see if the apparent critical conditions show the same dependence on flow parameters
as the predicted critical conditions.

The ramp tests were performed by ramping the cylinders from Pe = 100 000 to
160 000 at a rate d(Pe)/dt = 16.0 s−1, using both the pure glycerin and the 93.3%
glycerin–6.7% water solution. As in the step tests, we changed the properties of the
fluid from ramp to ramp by adjusting the experimental temperature. A time sequence
of the flow for each ramp was generated using the central 7.5% of the pixels in the
movie images. Example space–time plots for three of the ramp experiments are shown
in figure 10. The critical rotation speeds were determined from the time sequences,
and these rotation speeds were used along with the fluid property data to calculate
the critical values of Re, Na, and Pe. Note that as we continue the ramp above
the critical conditions, the axial propagation velocity of the vortices increases with
increasing Re and Na. This is especially obvious at the bottom of figure 10(c); as the
ramp continues above Rec the slope of the lines in the time sequence decreases until
the lines are almost flat, which corresponds to the vortices moving very large axial
distances in short times (i.e. a very high speed).

In three experiments at extremely low Na, the procedure above was modified
slightly. For experiments with the 93.3% glycerin–6.7 % water solution at 313.7,
315.1 and 316.5 K, the critical condition for onset of instability lies near or below
Pe = 100 000. The ramps in this case were conducted from Pe = 63 000 to 126 000
at 313.7 K, from Pe = 58 000 to 121 000 at 315.1 K, and from Pe = 53 000 to 116 000
at 316.5 K. All ramps are performed at the same ramp speed as used above, so that
d(Pe)/dt = 16.0 s−1.

The values of Rec vs. critical Na are plotted in figure 11(a). As mentioned previously,
a rapid ramp with a less viscous fluid (essentially isothermal flow) produced a
secondary flow within 0.4% of the isothermal value for a Newtonian fluid. This
would correspond to a point Rec = 140.2, Na ≈ 0. We do not include this point
in figure 11(a), however, since this ramp was performed at a different ramp rate
(d(Pe)/dt = 27.6 s−1) than the rest of the data. Figure 11(a) shows that increasing
Nahme–Griffith number (i.e. increasing viscous heating) dramatically destabilizes
Newtonian Taylor–Couette flow. At Na ≈ 2, the critical Reynolds number has
dropped to less than 5% of the isothermal value. This is a striking result considering
that there is no externally imposed temperature gradient. This is a much larger effect
than was seen in the experimental studies of Sorour & Coney, where externally
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Figure 10. Space–time plots of selected ramp experiments used to determine apparent critical
conditions in the narrower geometry. Ramps were conducted from Pe = 100 000 to 160 000 at a
rate d(Pe)/dt = 16.0 s−1. (a) Glycerin, 291.5 K, Re = 7.2 to 11.6. Transition occurs at Re = 9.1,
Na = 1.64, Pe = 127 000. (b) Glycerin, 305.4 K, Re = 22.2 to 35.6. Transition occurs at Re = 30.0,
Na = 0.504, Pe = 135 000. (c) 93.3% glycerin–6.7% water, 305.4 K, Re = 74.8 to 119.6. Transition
occurs at Re = 92.4, Na = 0.120, Pe = 129 000. The span of the z-axis is 4.8 gap widths and the
inner cylinder is rotating in each image.

imposed temperature differences of up to 16 K cause the critical Reynolds number to
decrease only to 84% of the isothermal value.

Over the range of Na for which results for both fluids may be obtained, the
curves are close to overlapping but the discrepancy exceeds slightly the experimental
uncertainty. The pure glycerin displays critical Reynolds numbers consistently above
those for the glycerin–water solution. Since the thermal expansion coefficient for
glycerin is approximately 150% that of the glycerin–water solution, we speculate that
the small discrepancy may be due to buoyancy. That is, for the glycerin, the same
Nahme–Griffith number (and hence the same temperature difference across the gap)
results in a higher Gr than for the glycerin–water solution, and these slight differences
in buoyancy may give rise to the slight changes in the critical conditions reported.

The Péclet number at onset of instability is plotted versus Nahme–Griffith number
in figure 11(b). This plot confirms the trend observed with the step tests: the instability
appears to occur at a relatively constant value of Péclet number. (As in figure 11(a),
the curves for the two different fluids do not collapse to the same curve, even when
considering experimental uncertainty. Again, other influences such as buoyancy may
affect the flow and result in these differences.) As Na approaches zero, however, a
region where the critical Pe drops off precipitously is seen. This is the region where
the isothermal critical condition is approached, and our strategy for performing ramp
tests may not provide the same, consistent degree of over-prediction of the critical
conditions at these very low Nahme–Griffith numbers as it does at higher Na. In
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Figure 11. The apparent critical conditions for pure glycerin and 93.3% glycerin–6.7% water mix-
ture, when the inner cylinder is ramped from Pe = 100 000 to 160 000 at a rate d(Pe)/dt = 16.0 s−1.
(a) Critical Reynolds number vs. critical Nahme–Griffith number. (b) Critical Péclet number vs.
critical Nahme–Griffith number. (c) Critical axial wavenumber vs. critical Nahme–Griffith number.
All reported transitions are to axisymmetric oscillatory secondary flows that travel downward in
the TC cell.
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addition, as mentioned above, buoyancy effects become more important at these low
Na; Grashof numbers based on both gravitational and centrifugal potentials are
largest at Na ∼ 0.1.

The critical axial wavenumber is plotted versus Nahme–Griffith number in figure
11(c). Here the axial wavenumber is defined as 2π(R2 −R1)/(length of a vortex pair).
These data were determined from the ramp images immediately after the onset of
secondary flow. The critical axial wavenumber is relatively constant at ∼ 2.7, with the
wavenumbers at lower Na showing more scatter.

The first transition seen in the ramp experiments is always from the purely azimuthal
base state to an axisymmetric vortex structure in which the vortices move slowly
down the z-axis of the TC cell. The vortex propagation velocity (or frequency) at
the critical condition can be determined from image data immediately after the onset
of secondary flow. This frequency is approximately constant at ∼ 0.001 s−1 for all
experiments in which Rec < 105. For experiments in which Rec > 105, the frequency
increases dramatically to ∼ 0.1 s−1. The vortex propagation velocities show a lot of
scatter, particularly at the lower Reynolds number flows. We believe the scatter is
due to the difficulty in unambiguously determining the critical vortex propagation
speed from ramp tests. As mentioned in the discussion of figure 8, for step tests in
cylinder velocity a finite time is required after the initial onset of instability for the
oscillatory vortices to reach a steady propagation speed. In a ramp test, the vortices
also take time to reach their steady propagation speed. During this time, however,
the rotation speed of the cylinders will be increasing due to the ramp, causing an
increase in vortex propagation speed as seen at the bottom of figure 10(c). We report
the values as near to the critical condition as possible, but the extent to which the
ramp affects these measurements is unclear.

Experimental ramps at very low Na, achievable with the 93.3% glycerin–6.7%
water solution at high temperatures (T0 > 308 K), can be performed at Reynolds
numbers that approach and then exceed the isothermal critical condition, Rec,iso,
for the transition to Taylor vortex flow. In these experiments, the first transition is
to the viscous-heating-induced oscillatory vortex flow. A second transition is then
observed to Taylor vortex flow near Rec,iso. Close-up-view time-sequence plots of such
experiments at three different temperatures are shown in figure 12. In the ramp from
Re = 90.0 to 144.0 at T0 = 308.15 K shown in figure 12(a), there is a transition to
oscillatory vortices at Re = 111.5. An abrupt transition to stationary Taylor vortices
occurs at Re = 131.2. (Rec,iso = 140.2 for this narrow gap apparatus; all Re reported
here are based on fluid properties evaluated at the thermostatting bath temperature
T0.) These vortices are stationary but do move slightly as they settle into position.
A transition to wavy Taylor vortices occurs at Re = 143.0. Since this is a non-
axisymmetric flow structure, the vortices appear smeared as seen at the bottom of
figure 12(a). Figure 12(b) shows a ramp from Re = 77.6 to 155.1 at T0 = 313.7 K. In
this case, the transition to oscillatory vortices occurs at Re = 138.8. A transition to
stationary Taylor vortices occurs at Re = 145.2. The ramp ended before a transition
to wavy Taylor vortex flow was observed. Figure 12(c) shows a ramp from Re = 77.1
to 169.6 at T0 = 316.5 K. The transition to oscillatory vortices occurs at Re = 147.5,
a transition to stationary Taylor vortices occurs at Re = 151.3, and a transition to
wavy Taylor vortices at Re = 167.2.

The images in figure 12 show quite clearly that the oscillatory thermally induced
instability precedes the formation of Taylor vortices at these Na. As the viscosity
and hence Nahme–Griffith number is decreased, the range of cylinder rotation speed
over which the oscillatory vortices may be observed decreases. As Na approaches
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(a) (b) (c)

tt

z z z
71 min

63 min

0 min

Figure 12. Space–time plots of ramp experiments of the 93.3% glycerin–6.7% water solution near
the isothermal critical condition (Re = 140.2). The inner cylinder speed is ramped from 0 to the
final value in 63 min, and the final rotation speed is held for an additional 8 min. (a) Ramp from
Re = 90.0 to 144.0 at T0 = 308.15 K. There is a transition to oscillatory vortices at Re = 111.5,
Na = 0.0973. An abrupt transition to stationary Taylor vortices occurs at Re = 131.2. A higher
transition to wavy Taylor vortices occurs at Re = 143.0. (b) Ramp from Re = 77.6 to 155.1 at
T0 = 313.7 K. The transition to oscillatory vortices occurs at Re = 138.8 and Na = 0.0481, and
the transition to stationary Taylor vortices occurs at Re = 145.2. (c) Ramp from Re = 77.1 to
169.6 at T0 = 316.5 K. The transition to oscillatory vortices occurs at Re = 147.5 and Na = 0.0312,
a transition to stationary Taylor vortices occurs at Re = 151.3, and a transition to wavy Taylor
vortices at Re = 167.2. The span of the z-axis is 4.8 gap widths and the inner cylinder is rotating in
each image.

zero, the oscillatory transition will not occur and stationary Taylor vortex flow is the
first observed transition, as in our preliminary experiments with the lowest-viscosity
glycerin–water mixture. In this case, stationary Taylor vortices were observed at
the predicted isothermal critical Re. It is not clear, however, whether stationary
Taylor vortices are indeed the first transition at this small Na, or if there is a very
narrow regime where oscillatory vortices occur, but the regime is so narrow it escapes
detection.

In an effort to elucidate the nonlinear stability behaviour of this new mode,
experiments were performed in which the inner cylinder speed was ramped through
the critical condition from below (a ramp up) and from above (a ramp down). On
the ramp up, Rec is found as described above. The ramp down typically started at a
Reynolds number 130% of Rec. These experiments were performed with the 93.3%
glycerin–6.7% water solution for several temperatures. In each case the critical Re
determined from the ramp down is slightly less than Rec determined from a ramp
up. However, the differences between the two values of Rec are small and within
the uncertainty of the experiment. Thus, more precise experiments are necessary to
determine whether the bifurcation is supercritical or weakly subcritical.

Preliminary comparisons of the linear stability theory of Al-Mubaiyedh et al. (2002)
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with these experiments show good agreement. While these authors perform their linear
stability analysis on glycerin with flow in a wider geometry (R1/R2 = 0.827) than the
ramp experiments presented here (R1/R2 = 0.912), we can use these predictions for
an initial, rough comparison. The magnitude of destabilization is in near-quantitative
agreement with the ramp experiments shown in figure 11. At a Nahme–Griffith
number of 2, both the experiments and predictions show Rec/Rec,iso ≈ 0.05. The critical
axial wavenumber is also comparable with the theoretical predictions. However, the
linear theory predicts an axisymmetric stationary mode if the inner and outer wall
temperatures are the same, while experimentally we observe axisymmetric oscillatory
modes of instability. An oscillatory mode is predicted by Al-Mubaiyedh et al., however,
if the imposed thermal boundary condition at the outer cylinder is 1.0 K hotter than
the inner cylinder. This boundary condition may not be unrealistic since the outer
cylinder of the apparatus is made of a low-thermal-conductivity glass. This outer
wall may reach slightly higher temperatures than the aluminium inner wall when
heat is generated in the fluid under the action of viscous dissipation. Predictions
with this modification exhibit the observed temporal symmetry and the magnitude
of destabilization is in semi-quantitative agreement with our experiments over the
entire range of experimental data. In reality, we expect that any difference in wall
temperatures will depend on the amount of heat generated and will thus vary with
Na rather than remaining constant at 1.0 K. In addition, Al-Mubaiyedh et al. predict
that under certain thermal boundary conditions, the bifurcation is subcritical. While
our preliminary experiments to determine the nonlinear stability behaviour of the
flow were inconclusive, a subcritical bifurcation would result in measured values of
Rec below those predicted by linear stability theory. We expect that with the proper
choice of temperature difference between the outer and inner walls, or by imposing
an appropriate outer-wall heat-flux boundary condition, and taking into account
subcritical bifurcations, predictions for the narrow geometry will yield quantitative
agreement with our experiments.

4. Conclusions
Here we have reported a new instability in the TC flow of Newtonian fluids

that is caused by a coupling of viscous heating and centrifugal destabilization. The
disturbance flow consists of axisymmetric toroidal vortices that are oscillatory and
travel slowly down the vertical axis of the TC cell. This secondary flow is several orders
of magnitude weaker than the base flow. Both the vortex propagation speed and the
secondary flow strength increase substantially as the isothermal critical condition is
approached (cf. figure 12). We attribute the lack of previous reports on this instability
to the long time scales before the onset of secondary flow, to the high Na (i.e. very high
viscosity) required to observe the instability, and to the weakness of the secondary
flow. In addition, the window of conditions under which the oscillatory instability
can be observed before the onset of Taylor vortex flow narrows considerably with
decreasing Na; this may also have contributed to the lack of previous observation of
this instability.

Step tests in cylinder velocity at fixed Re and Na but varying co-rotation parameter
B demonstrate that increasing centrifugal force leads to increased destabilization of
the flow. Step tests in cylinder velocity at fixed Re with varying Na indicate that the
time for onset of instability is dependent on the Péclet number. The critical Péclet
number at which the onset time diverges was found to be approximately 120 000. The
onset times observed are consistent with the thermal time scale, i.e. the time for a
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fluid under shear to attain a steady temperature profile under the influence of viscous
heating.

Ramp tests in cylinder velocity confirm that the instability occurs at a nearly con-
stant Péclet number of ∼ 120 000 if Na > 0.1 (i.e. if we are far enough away from the
isothermal critical conditions). When the critical Reynolds number is plotted versus
Nahme–Griffith number, the ramp tests reveal the large extent of destabilization as
Na is increased. The magnitude of this destabilization is in agreement with the linear
stability calculations of Al-Mubaiyedh et al. (2002), and the proper spatial and tem-
poral symmetry is predicted under the assumption that the outer cylinder is slightly
hotter than the inner.

We observe a 95% reduction from the isothermal critical Reynolds number for
flow with a Nahme–Griffith number equal to 2.0. This Na corresponds to a maximum
increase in temperature of 4.3 K in the fluid. Previous studies (Sorour & Coney 1979;
Snyder & Karlsson 1964) show that externally imposed (linear) radial temperature
gradients that cause buoyancy-induced destabilization of TC flows result in much more
modest effects. Experiments with the largest imposed temperature gradients, studied
by Sorour & Coney, show that temperature differences of up to 16 K cause only a
16% reduction from the isothermal critical Re for much less viscous oils. It is thus
extremely important to consider viscous heating in hydrodynamic stability calculations
and experiments, because unlike externally imposed temperature gradients and other
modifications to the flow field, viscous heating is a function of fluid properties only
and cannot be easily controlled or eliminated.

Finally, viscous heating effects are likely to be very important in the processing of
high-viscosity polymeric materials. The current work may have considerable implica-
tions regarding the stability of flows of polymeric liquids. While polymer processing
flows are typically destabilized by elasticity rather than inertia, our experiments with
Newtonian fluids illustrate important ideas that can also be applied to the viscoelastic
problem, where long time scales arise both due to viscous heating and due to the
relaxation time of the polymer molecules. We are currently undertaking a detailed
study of the TC stability of dilute polymer solutions to elucidate the effects of viscous
heating on the elastic instability.
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